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1 Introduction

For a finite free module M over a ring R, we have a dual module M∨ =
hom(M,R). If we choose a finite basis (ri) for M , then we get a dual basis (r∨i )
for M∨. We can then calculate the trace of an endomorphism f ∈ EndR(M) by
the formula

tr(f) =

n∑
i=1

ev(e∨i , f(ei)) ∈ R.

which is an invariant of f . For example the dimension of M is equal to tr(idM ).

We can generalize the notion of dualizable objects and traces to symmetric
monoidal (∞, n)-categories, where the trace of an endomorphism will be an
endomorphism of the unit. We are particularly interested in a categorified
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version of the first example, where we replace Ab by Prlst the (∞, 2)-category
of presentable ∞-categories and colimit-preserving functors.

In this case, we have C ∈ CAlg(Prlst) and the symmetric monoidal (∞, 2)-
category ModC(Pr

l
st). In this setting, we can identify for an R ∈ Alg(C), the

(Topological) Hochschild homology HH(R) = R ⊗R⊗Rop R ∈ C with the trace
of the dualizable object RModR(C) ∈ ModC(Pr

l
st).

The typical example of this is C = Sp, but we are interested in the example
of C = D (Liq)p, the derived ∞-category of complex liquid vector spaces [CS22,
Definition 2.13, Theorem 3.11].

For a compact complex manifoldX, OX which is the derived category of qua-
sicoherent sheaves on X, is an algebra in D(Liqp), so we can take its Hochschild
homology. We show that Hochschild homology, and that the trace is a localizing
invariant.

This gives a map from the K-theory to Hochschild homology, and this is the
first step to proving Grothendieck-Riemann-Roch.

2 Higher Traces

We will follow the exposition given in [CCRY22].

2.1 Definition of dualizable objects and traces

Definition 2.1. Let (C⊗ be a symmetric monoidal ∞-category. An object X is
dualizable if there exist another object X∨ with maps evX : X∨ ⊗ X → 1 and
coevX : 1→ X ⊗X∨ such that the composite maps

X
coevX ⊗idX−−−−−−−−→ X ⊗X∨ ⊗X

idX⊗evX−−−−−−→ X

X∨ IdX⊗coevX−−−−−−−−→ X∨ ⊗X ⊗X∨ evX ⊗IdX−−−−−−→ X

are homotopic to the identity.

Informally, dualizability is a finite condition on objects of an symmetric
monoidal ∞-category.

Given a map f : X → Y between dualizable objects, we have a dual mor-
phism given by the composite map

Y ∨ id⊗ coevX−−−−−−−→ Y ∨ ⊗X ⊗X∨ id⊗f⊗id−−−−−−→ Y ∨ ⊗ Y ⊗X∨ evY ⊗ id−−−−−→ X∨.

For an endomorphism of an dualizable object, we can define its trace.
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Definition 2.2. Let f : X → X be an endomorphism of a dualizable object.
Then the trace tr(f) ∈ MapC(1,1) is given by the composite map

1
coevX−−−−→ X ⊗X∨ f⊗id−−−→ X ⊗X∨ ≃−→ X∨ ⊗X

evX−−→ 1

The dimension of X is the trace of the identity map.

Example 2.3. Given a ring R, the dualizable objects of the derived ∞-category
D(R) are the perfect complexes. The dimension of a perfect complex C is the
Euler characteristic and the trace of an endomorphism is the Lefschetz number.

In particular a finite free module R⊕n is dualizable and the trace of an en-
domorphism of a finite free module is the trace from linear algebra.

similar to the trace in linear algebra, the trace is cyclicly invariant in general.
Indeed, given morphisms f : Y → X and g : X → Y of dualizable objects, we
have tr(fg) ≃ tr(gf), defined by the following diagram

1 X ⊗X∨ X ⊗X∨
1

1 Y ⊗ Y ∨ Y ⊗ Y ∨
1.

coevX

coevY

fg⊗idX∨

gf⊗idX∨ evY

g⊗f∨

evX

We would like to make the trace into a natural transformation. In par-
ticular, we would like for a symmetric monoidal category C, an anima Ctrl of
endomorphisms of dualizable objects, with the trace a functor of anima

Ctrl → ΩC

that is natural in C.

If C is a (∞, 1)-category, then the endomorphisms of dualizable objects as-
semble to an anima and not an (∞, 1)-category.

However if we start with an (∞, 2)-category C (and more generally (∞, n)-
categories), then the trace functor will be a functor of (∞, n − 1)-categories.
We will first define the functor for the (∞, 1)-case, and use it to construct the
general (∞, n)-case.

2.2 (∞, 1)-functoriality of the trace

Let ΩC = MapC(1,1) be the space of endomorphisms of the unit 1, and let
Ctrl = Map(BN,Cdbl) be the ∞-groupoid, where Cdbl is the full subcategory
spanned by dualizable objects. We want to construct a map of spaces

tr : Ctrl → ΩC

Which is natural in C.
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The key to defining this, is to show that the functor (−)dbl is corepresentable,
so that the we can construct the natural map by using the Yoneda lemma.

First (−)dbl is a functor CAlg(Cat∞) → Cat∞, since monoidal functors
preserve dualizable objects. This functor has a left adjoint1, which we denote
by Frdbl(−). Thus, have an equivalence

Map⊗(Frdbl(I),C)
≃−→ Map(I,Cdbl).

It follows that (−)trl is corepresented by Frdbl(BN), so by the Yoneda lemma
the trace map is determined by a point of ΩFrdbl(BN).

The unit of the adjunction is a map γuniv : BN → Frdbl(BN)dbl, which, by
definition, is an element of Frdbl(BN)trl. We call this endomorphism the uni-
versal traceable endomorphism. Taking the trace of this endomorphism gives
an element of ΩFrdbl(BN), which by the Yoneda Lemma gives a natural trans-
formation. We define this to be the trace map. The trace is now given by the
following diagram.

Frdbl(BN)trl ΩFrdbl(BN)

γuniv tr(γuniv)

f ΩF (tr(γuniv))

Ctrl ΩC

ΩFF◦−

trC

tr
Frdbl(BN)trl

Since F is monoidal, we have

ΩF (tr(γuniv)) ≃ tr(F ◦ γuniv) ≃ tr(f),

showing that the natural map agrees with our former definition on objects. By
precomposing by the map (Cdbl)≃ ↪→ Ctrl that to a dualizable object assigns its
identity map, we also get a functorial assignment of dimension.

2.3 Quick facts about (∞, n)-categories

We will now define the trace functor for an (∞, n)-category C.
In our context define (∞, n)-categories inductively as ∞-categories enriched in
(∞, n− 1)-categories.

We will give some properties of (∞, n)-categories, which differ from ordinary
(∞, 1)-categories.

1Maxime showed this in the exercise session.
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In (∞, 1)-categories, k-morphisms are (k− 1)-morphisms in the mapping space,
and since all the maps in an anima are equivalences, all k-morphisms for k ≥
1 are equivalences. However this is not true in an (∞, n)-category, as a k-
morphism is instead a k − 1-morphism in the mapping (∞, n − 1)-category.
Continuing in this way the k-morphism is an 1-morphism of an (∞, n− k − 1)-
category for k ≤ n, where it need not be an equivalence.

The primary example of an (∞, n)-category is the (∞, n)-category of (∞, n−
1)-categories with the mapping (∞, n−1)-category Fun(C,D) for C,D ∈ Cat(∞,n−1).

Based on this example, we define adjoint morphisms in an arbitrary (∞, n)-
category.

Definition 2.4 (Adjoint maps). A map L ∈ MapC(X,Y ) is left adjoint to a
map R ∈ MapC(Y,X) for C ∈ Cat(∞,n), if there exist 2-maps

LR
ϵ−→ idY

idX
η−→ RL

satisfying the triangle identities

L LRL R RLR

L R

Lη

ϵL
idL idR

ηR

Rϵ

Note that for an (∞, 1)-category all the 2-morphisms are equivalences, so an
adjoint pair in this case will just be a pair of inverse morphisms.

2.4 Higher traces

We will now extend the trace to (∞, n)-categories C, where the trace map will
be a natural map of (∞, n− 1)-categories

tr : Ctrl → ΩC

In particular, there are non-equivalent morphisms in Ctrl between two endomor-
phisms. A general morphism between two endomorphisms has the following
description.

Definition 2.5. A map of traceable endomorphisms f and g, is a diagram

X Y

X Y,

φ

φ

f gα

where φ is a left adjoint and α : φf → gφ is a 2-morphism.
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We can then define how the trace should act on these morphisms:

1 X ⊗X∨ X ⊗X∨

Y ⊗ Y ∨ X ⊗ Y ∨ Y ⊗X∨ X ⊗X∨

Y ⊗ Y ∨ Y ⊗ Y ∨ 1.

coevX f⊗idX∨

1⊗(ϕr)∨ ϕ⊗1

ϕr⊗1

ϕ⊗1

g⊗1

1⊗(ϕr)∨

ϕr⊗1

evY

evX

coevY

idX∨X∨

idY ∨Y ∨

The equality in the upper left and lower right corners follow from definition of
dual morphisms.

The optimal construction of (−)trl, would be as a corepresentable functor,
since we could then define the trace again by the Yoneda Lemma. However it
turns out that corepresentable functors are to rigid, so we have to introduce the
lax and oplax functor ∞-categories.

Recall that for a natural transformation η between two functors F,G : C→ D

there should be for every morphism f : x→ y in C a commuting diagram

F (x) G(x)

F (x) G(y),

ηx

ηy

Ff Gf
≃

where the commutativity is given by 2-equivalence. If we remove the criteria of
this morphism being an equivalence, we get a lax commuting square, and if we
instead had required the 2-morphism to go the other way, like so

F (x) G(x)

F (x) G(y),

ηx

ηy

Ff Gf

we get an oplax commuting square. Replacing the conditions of coherences
given by equivalences in Fun(C,D), with any morphisms then gives us two new
categories Funlax(C,D) and Funoplax(C,D) depending on which way the arrows
are oriented.
Notice that the conditions on functors have not changed, so the categories have
the same objects as Fun(C,D), but different higher morphisms.

Defining these categories formally is a bit technical, since we need to describe
all the coherences. The ideal approach, which has not yet been fully developed, is
to give a non-symmetric monoidal structure on Cat(∞,n) called the Gray product

denoted by ×lax, such that we can define the categories by representability:

Map(E,Funlax(C,D)) ≃ Map(E×lax C,D)

Map(E,Funoplax(C,D)) ≃ Map(C×lax E,D).
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So far the Gray product has only been defined for (∞, 2)-categories [GHL20] and

a set (θk⃗) generating Cat(∞,n) by colimits [JFS17, Definition 5.7]. However the

special case θk⃗ is enough to build the lax and oplax functor categories. Avoiding
the technical details, we then have (∞, n)-categories

Funlax(C,D),Funoplax(C,D)

with objects the same as for Fun(C,D), but with oplax and lax natural trans-
formation.

Remark 2.6. If D is a symmetric monoidal category, then Funoplax(C,D) and
Funlax(C,D) inherit the symmetric monoidal structure of D, since the functors
Funlax(C−) and Funoplax(C,−) preserve limits and in particular finite products,
and so preserve monoids in Cat(∞,n).

We can also define the lax and oplax functor categories of monoidal struc-
tures on C,D.

Definition 2.7. For symmetric monoidal (∞, n)-categories C and D, the (∞, n)-
categories Fun⊗lax(C,D) Fun⊗lax(C,D) are given by

Map(E,Fun⊗lax(C,D)) ≃ Map⊗(C,Funoplax(E,D))

Map(E,Fun⊗oplax(C,D)) ≃ Map⊗(C,Funlax(E,D)).

Using these oplax transformations we can define an appropriate (∞, n− 1)-
category Ctrl.

Definition 2.8. Given a symmetric monoidal (∞, n)-category C, the (∞, n−1)-
category Ctrl is given by

Ctrl := ιn−1 Fun
⊗
oplax(Fr

dbl(BN),C),

where ιm takes the maximal sub-(∞,m)-category of an (∞, n)-category.

We have a natural isomorphism

ι0 Fun
⊗
oplax(−,−) ≃ Map⊗(−,−)

as functors landing in anima. Informally, this can seen since a natural isomor-
phism in Fun⊗oplax(−,−) will consist of equivalences, and as such correspond to

a morphism of Map⊗(−,−).
As such, we get for an (∞, 1)-category C, that our two definitions of Ctrl

agree. The following corollary shows that this construction agrees with our
notions of objects and morphisms from before.

Corollary 2.9. There is a monomorphism of (∞, n)-categories

Ctrl ↪→ Funoplax(BN,C),

which on objects are the endomorphisms of dualizable objects, and morphisms
are as in definition 2.5
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This shows that we have an appropriate source (∞, n− 1)-category. We can
also construct the (∞, n− 1)-category of dualizable objects

Cdbl := ιn−1 Fun
⊗
oplax(Fr

dbl(∗),C).

From the map BN→ ∗, we get an embedding Cdbl → Ctrl

Definition 2.10 (Loop Space). The loop space ΩC of an (∞, n)-category is
defined by the following pullback in Cat(∞,n−1)

ΩC C1

1 C0 × C0.
(1,1)

(d1,d0)
⌟

This matches our definition for (∞, 1)-categories. The objects are the en-
domorphisms of the unit, and morphisms are 2-morphisms between 2 endomor-
phisms, etc. If C is symmetric monoidal, then ΩC is a pullback of symmetric
monoidal categories, and as such there is a symmetric monoidal structure on
ΩC. We now have the source and target categories of the trace functor. To
construct the trace functor, we reduce it to the n = 1 case by the two following
lemmas.

Lemma 2.11. Let C be a symmetric monoidal (∞, n)-category. For any (∞, n−
1)-category E there is an equivalence

Map(E,Ctrl) ≃ (i1 Funlax(E,C))
trl.

Lemma 2.12. For every (∞, n− 1)-category E the canonical map

Funlax(E,ΩC)→ ΩFunlax(E,C)

is an equivalence. In particular,

Ω(i1 Funlax(E,C)) ≃ Map(E,ΩC).

We can now define the trace functor

Definition 2.13. Let C be a symmetric monoidal (∞, n)-category. The trace
functor

tr : Ctrl → ΩC

is the functor that represents the composite map

Map(E,Ctrl) ≃ (i1 Funlax(E,C))
trl tr−→ Ω(i1 Funlax(E,C)) ≃ Map(E,ΩC)

with E ∈ Cat(∞,n−1) :

Since the functor is defined by our original trace functor, it agrees with it on
objects. It can also be shown that it agrees with the previous definition of trace
of map of endomorphisms. Precomposing with the embedding Cdbl ↪→ Ctrl we
get the higher dimension map.
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3 Traces of C-linear ∞-categories

With the higher categorical trace, we can look at a categorified version of our
original example, the module category ModR(Ab) for a ring R. In this categori-
fied setting, we will show how to identify the Hochschild homology of a ring R
with a trace.

Let Prlst be the (∞, 2)-category of presentable ∞, 1-categories, and let C ∈
CAlg(Prlst) be a presentably stable symmetric monoidal ∞-category. We can
form the (∞, 2)-category ModC(Pr

l
st) of presentable C-linear categories. The

morphisms of ModC(Pr
l
st) are the C-linear left adjoint functors, and the 2-

morphisms are the C-linear natural transformations.

This (∞, 2)-category share a lot of the properties of ordinary module cat-
egories. For instance there is a C-linear version of the Lurie tensor product
D⊗C E, which is the universal recipient of a C-linear colimit-preserving map

D× E→ D⊗C E,

So ModC(Pr
l
st) is a symmetric monoidal category. Furthermore we have an

action on FunC(E,D) by C, so it is a C-linear category, and therefore is an
internal hom object in ModC(Pr

l
st).

Given a traceable endomorphism E ∈ ModC(Pr
l
st), we can calculate its trace,

which lands in ΩModC(Pr
l
st) ≃ FunC(C,C). However, as we have discussed

earlier FunC(C,C) ≃ C by evaluating at the unit 1 ∈ C.
Taking the composition with this equivalence, we can write the trace functor

for this category as:

Definition 3.1. The C-linear trace functor is the composite map

ModC(Pr
l
st)

trl
trModC−−−−→ ΩC

≃−→ C.

Example 3.2. As C is the unit of ModC(Pr
l
st), it is a dualizable object. Con-

sidering the endomorphism given by tensoring with X ∈ C, which we denote by
X, and writing out the trace, we find that TrC X ≃ X.

3.1 Hochschild homology as a C-linear trace

With the proper framework done, we can now identify the Hochschild homology
with the trace of a certain object.

We will first give the regular definition of Hochschild homology. In Higher
Algebra Lurie defined the bimodule ∞-operad BM⊗ [Lur17, Definition 4.3.1.1].
The ∞-category BMod(C) of algebras over BM⊗ in a symmetric monoidal ∞-
category C, has as objects, triples (A,B,M), where A,B are algebras and M
is an object with a compatible left action of A and a right action of B. There
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is a forgetful functor, forgetting the object which is acted upon, which gives a
cartesian diagram

A BModB(C) BMod(C)

A×B Alg(C)×Alg(C).

⌟

We denote the category of R-R bimodules by BModB(C).
Lurie constructed functors taking a left action on an object, to a right action
by the opposite algebra, which are equivalences

LModR⊗Rop
∼←−−
τR

BModR(C)
∼−−→
σR

RModR⊗Rop

by [Lur17, Proposition 4.6.3.11]. With this in mind we define Hochschild ho-
mology.

Definition 3.3. Let C be a symmetric monoidal presentable category, and let
R ∈ Alg(C) be an associative algebra in C, and let M ∈ BModR(C) be a bimod-
ule. The Hochschild homology of (R,M) is then

HHC(R,M) := σR(M)⊗R⊗Rop τR(R) ∈ C.

Here we use that R is a bimodule over itself by left and right multiplication. The
Hochschild homology of R is HH(R) := HHC(R,R).

We want to show that HH(R) ≃ dim(RModR(C)). First we show that
RModR(C) is dualizable with dual LModR(C). By shifting the multiplication
around we have LModR(C) ≃ RModRop(C), so we can construct the duality
between these instead.

Lemma 3.4. The composite

C
Rc

−−→ RModR⊗Rop(C) ≃ RModR(C)⊗C RModRop(C)

is the coevaluation of a duality datum, with evaluation

RModR(C)⊗C RModRop(C) ≃ RModR⊗Rop(C)
⊗R⊗RopRe

−−−−−−−→ C.

Here Rc is R with the action shifted to the right, and Re has the action
shifted to the left. Note that these modules also give the above mentioned
equivalence

BModR ≃ RModRop⊗R

M 7→ Rc ⊗R⊗Rop (M ⊠Rop),

where ⊠ is the external tensor product, sending

BModA×BModB → BModA⊗B .

We are now ready to give the equivalence
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Theorem 3.5. Let R ∈ Alg(C) be an associative algebra in C and let M be an
(R,R)-bimodule. There is an equivalence between the Hochschild homology of
the pair (R,M) and the C-linear trace of the C-linear endofunctor − ⊗R M :
RModR(C)→ RModR(C):

HH(R,M) ≃ TrC(RModR(C),−⊗R M) ∈ C.

In particular for R = M , we get

HH(R) ≃ dimC(RModR(C)) ∈ C.

Proof. We will write out the trace explicitly and see that it agrees, with Hochschild
homology

C
coev−−−→ RModR(C)⊗C RModRop

M⊗Cid−−−−−→ RModR(C)⊗C RModRop
⊗Re

−−−→ C

Plugging in our definition of evaluation and coevaluation, we get that it is also
given by the composition

C
Rc

−−→ RModR⊗Rop
⊗(M⊠Rop)−−−−−−−→ RModR⊗Rop

⊗Re

−−−→ C

If we evaluate the composition of the first two maps at the unit in C, we get
Rc⊗(M⊠Rop), however this is just the image ofM in the equivalence BModR ≃
RModRop⊗R given above. If we tensor with R as a left module, then we get
exactly the formula for topological Hochschild homology, finishing the proof.

Example 3.6. If we choose C = Sp, then we can take the Hochschild cohomol-
ogy of an ordinary ring by considering its Eilenberg-Maclane spectrum, which
we define to be the topological Hochschild homology HH(R) of R.

If we choose C = D(Z) with the derived tensor product, then we recover or-
dinary Hochschild homology.

Lastly we will be interested in the case C = D(Liqp), where D(Liqp) is the
derived∞-category of complex liquid vector spaces. This is the category Clausen
and Scholze defined complex analytic spaces over, and as such will be the setting
we will state Hirzebruch-Riemann-Roch in.

Example 3.7. In the case C = Sp we can give a concrete calculation of HH(S).
Since S is the unit of Sp, we get that RModS(Sp) ≃ Sp, which is the unit of
Prlst. However from Example 3.2, this is just equivalent to S, since tensoring
with S is equivalent to the identity.
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3.2 Chern Character from the Universal property of K-
theory

We have now established Hochschild homology as the composition

Alg(C)
Θ−→ (ModC(Pr

l
st))

dbl dimC−−−→ C

R 7→ RModR(C) 7→ dimC(RModR(C)),

where Θ is the functor defined in [Lur17, Section 4.8.3] taking an algebra to its
category of right modules. We will be interested in a special case of C:

Definition 3.8. The non-full (∞, 2) sub-category Catperf ⊆ Cat(∞,1) is spanned
by small, stable and idempotent complete ∞-categories and the exact functors.

Lurie constructed the fully faithful Ind-completion functor Ind : Catperf →
Prlst. We define a category C ∈ Prlst to be compactly generated if it is in
the image of the Ind-functor. A symmetric monoidal category in Catperf ,
E ∈ CAlg(Catperf) is rigid if every object in E is dualizable.

We now assume that C = Ind(E), where E is rigid. In this case we can
recover E by taking the compact objects in C, Cω ≃ E. Recall that Perf(R) is by
definition the compact objects in RModR(C), and that RModR(C) is compactly
generated. By [HSS15, Prop 4.9] there is a C-linear ind-completion

ModCω (Catperf)→ ModC(Pr
l
st)

which is fully faithful with image the compactly generated categories. From this
we get that Hochschild homology admits the factorization

Alg(C)→ (ModCω (Catperf))dbl
Ind−−→ (ModC(Pr

l
st))

dbl dimC−−−→ C.

R 7→ Perf(R) 7→ RModR(C) 7→ TrC(RModR(C))

We will also write HH for the functor dimC ◦ Ind : ModCω (Catperf)→ C.
The reason to write Hochschild homology in this way, is that we have another
functor defined on perfect complexes of R, namely K-theory.

When C = Sp, Hochschild homology is the map

Catperf
Ind−−→ Prlst

dimC−−−→ Sp .

We recall from [BGT13] and Hannes’ talk, that we have a universal property
of K-theory as a localizing invariant K : Catperf → Sp. Hence, for any localizing
invariant E

Nat(K,E) ≃ E(Spω)

We will show in the next chapter that Hochschild homology is a localizing in-
variant, and so we get
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Nat(K,HH) ≃ HH(Spω)

However we have that Spω ≃ ModS(Sp
ω), so THH(Spω) ≃ THH(S), and we

calculated earlier that THH(S) ≃ S, so

Nat(K,HH) ≃ S.

Taking π0 we have π0 Nat(K,THH) ≃ Z. The only map monoidal map is the
one corresponding to 1, which is the Dennis trace map from K-theory to THH
natural in Catperf . Again in [HSS15], the Dennis trace map is generalized to
other choices of C than Sp, giving us a map K → THH.

3.3 The trace is a local invariant

We owe from our last chapter to show that Hochschild homology is an localizing
invariant as a functor ModCω (Catperf)→ C. We will therefore prove that trace
is a localizing invariant, and from our identification, Hochschild homology is
then also a localizing invariant.

For THH to be a localizing invariant, it has to send exact sequences to cofiber
sequences.

Definition 3.9. A sequence

A
f−→ B

g−→ C

in Catperf is exact if it is a cofiber sequence and f is fully faithful.
Similarly a sequence in ModCω (Catperf) is exact, if it is an exact sequence in
Catperf by the forgetful functor.

The first step of our definition of HH is taking Ind-completion, so we have
to find out what an exact sequence becomes in ModC(Pr

l
st) after taking Ind-

completion. First we note that ModC(Pr
l
st) belong to a class of (∞, 2)-categories

with nice properties.

Definition 3.10. An (∞, 2)-category C is called linear, if the mapping cate-
gories are stable and composition induces exact sequences on mapping categories.
It is further linearly symmetric monoidal if the map C(X,Y )→ C(X⊗Z, Y ⊗Z)
given by tensoring with Z.

ModC(Pr
l
st) is a linearly symmetric monoidal (∞, 2)-category.

By [HSS15, Prop. 5.4] the ind-completion of an exact sequence in Catperf is
a localization sequence in ModC(Pr

l
st)

trl defined below

Definition 3.11. A sequence in an linear (∞, 2)-category C

X
ι−→ Y

π−→ Z

is called a localization sequence if the following conditions hold:
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• ι and π have right adjoints ιr and πr.

• the composite is the 0 object.

• the unit η : idX → ιrι and the counit for π is an equivalence.

• the sequence ιιr → IdY → πrπ is a cofiber sequence in C(Y, Y ).

A sequence in Ctrl

(X, f)
(ι,α)−−−→ (Y, g)

(π,β)−−−→ (Z, h)

is a localization sequence, if the underlying sequence in C is a localization se-
quence, and the maps are right adjointable.

Since exact sequences in ModCω (Catperf) correspond to localization sequences
in ModC(Pr

l
st)

dbl ↪→ ModC(Pr
l
st)

trl, we have to show that the trace sends local-
ization sequences

(X, idX)
(ι,α)−−−→ (Y, idY )

(π,β)−−−→ (Z, idZ)

to cofiber sequences, for linearly symmetric monoidal (∞, 2)-category C .

Theorem 3.12. Let C be a linearly symmetric monoidal (∞, 2)-category, then
the trace sends localization sequences on the form

(X, idX)
(ι,α)−−−→ (Y, idY )

(π,β)−−−→ (Z, idZ)

to cofiber sequences in ΩC.

Proof. If we restrict to endomorphisms over a single object Tr : C(X,X)→ ΩC,
the functor is exact, since the trace is given by the composite

C(X,X)
−⊗idX∨−−−−−→ C(X ⊗X∨, X ⊗X∨)

−◦coev−−−−−→ C(1, X ⊗X∨)
ev ◦−−−−→ C(1,1)

so it preserves cofiber sequences, since C is linearly symmetric. We therefore
want to show that

(X, idX)→ (Y, idY )→ (Z, idZ)

is equivalent to a sequence

(Y, a)→ (Y, b)→ (Y, c)

where a → b → c is a cofiber sequence. For a localization sequence the unit
η : idX → ιrι and ϵ : ππr → idZ are equivalences, so we have a commutative
diagram

(X, idX) (Y, idY ) (Z, idZ)

(Y, ιιr) (Y, idY ) (Z, πrπ)

(ι,α) (π,β)

(idY ,η) (idY ,ϵ)

14



Where ιιr → idY → πrπ is an cofiber sequence, since it is a localization se-
quence. Note that because of cyclic invariance we have

tr(ιιr) ≃ tr(ιrι) ≃ tr(idX)

tr(πrπ) ≃ tr(ππr) ≃ tr(idX)

So we get that the sequence

tr(X, idX)→ tr(Y, idY )→ tr(Z, idZ)

is equivalent to a cofiber sequence, and as such the trace preserves cofiber se-
quences.

4 Hirzebruch–Riemann–Roch theorem

We will now give an example of the use of Hochschild homology in Algebraic
Geometry in a proof of Grothendieck-Riemann-Roch presented by Dustin and
Peter Scholze in [CS22]. We will not give the full proof, but show how the map
from K-theory to Hochschild homology plays into it.

We first describe the setting of the theorem. Recall that for a complex
manifolds with boundary X, We can define its Hodge cohomology.

Definition 4.1. Let X be a complex manifold, then the Hodge cohomology is
given by

Hdg(X) = RΓ(X;⊕i≥0Ω
i[i] ∈ D(Liqp)

π0 Hdg(X) = ⊕i≥0H
i(X; Ωi) ∈ Liqp,

where Ωi is the bundle of i-forms. The contravariant functoriality comes from
the pullback of differential forms.

We want a Chern character map ch : Vect(X) → π0 Hdg(X). To get the
map, we first construct the first Chern class of line bundles. Recall that we
have Vect(X) ≃ H1(X;O×

X). The first Chern class is the natural map

c1 : H1(X;O×
X)→ H1(X; Ω1) ↪→ π0 Hdg(X)

induced by the map O×
X → Ω1 given by

f 7→ d log(f) =
df

f

The existence of the Chern character then comes from the following theorem

Theorem 4.2. There exists a unique map ch : Vect(X) → π0 Hdg(X) for a
complex manifold X, such that
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1. V 7→ ch(V ) commute with pullbacks.

2. For a short exact sequence of vector bundles on X

0→ V ′ → V → V ′′ → 0,

we have ch(V ) = ch(V ′) + ch(V ′′).

3. for a line bundle L we have ch(L) = ec1(L).

ec1(L) is understood as the Taylor series of ex. This is a finite sum since the
Hodge cohomology vanishes in degrees higher than dim(X). The Chern character
is also multiplicative with the tensor product ch(V ⊗W ) = ch(V ) · ch(W ).

Remark 4.3. We also have a similar construction of the Todd class, but it is
multiplicative with short exact sequences and

Td(L) =
c1(L)

1− e−c1(L))
.

The Chern character defines a natural map

ch : K0(Vect(X))→ π0 Hdg(X)

Since the Chern character by construction commutes with pullbacks, and it pre-
serves short exact sequences.

Given a proper map X → Y there is no pushforward structure on Vect(−),
however if we take the larger ∞ category Perf(−) we have the following propo-
sition.

Lemma 4.4. Let f : X → Y be a proper map of compact complex manifolds.
Then the pushforward map f∗ : CX → CY sends Perf(X) to Perf(Y ).

From this we get a pushforward structure on K(Perf(−)). Hodge cohomol-
ogy also has pushforward structure, by considering the dual maps of the pullback
map by Serre duality.

The question is now, does the Chern character commute with the pushfor-
ward structure as well? There is no a priori reason for this to be true, and it is
not, but it turns out if we add the Todd class it commutes. In short we have a
commutative diagram

K0(Perf(X)) K0(Perf(Y ))

Hdg(X) Hdg(Y ).

td(Tx)·ch td(Tx)·ch

f∗

f∗

Even the case when Y = ∗ and X is a compact manifold is interesting. Evalu-
ating at c ∈ Perf(X), the upper right gives

ch(f∗) · td(T∗) = ch(f∗) = χ(X, c),
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while the lower left gives

f∗(ch(c) · td(TX)) =

∫
X

ch(c) · td(TX),

where the integral is the trace map
∫
X

: Hdg(X) → C for a compact closed
manifold. From this we get the equality

χ(X, c) =

∫
X

ch(c) · td(TX)

which is the statement of Hirzebruch-Riemann-Roch. We now discuss how to
use Hochschild-homology to prove Grothendieck-Riemann-Roch theorem.

The proof will use a factorisation of the Chern character

K0(Perf(X))→ π0 HH(X) ∼= π0 Hdg(X)

Where the first map is natural with respect to pushforward, and the second is
an natural isomorphism, but only with respect to the pullback structure. We
will construct the first map.

Recall that we have constructed a natural map K → HH as functors from
ModPerf(liqp)(Cat

perf) → D(liqp). Note a proper map f : X → Y both induce
maps

f∗ : Perf(X)→ Perf(Y )

f∗ : Perf(Y )→ Perf(X)

The map f∗ commutes with colimits and satisfies the projection formula, so
it gives a map in ModPerf(liqp)(Cat

perf), so the map K → HH respects the
pushforward structure, and so by taking π0 we get the wanted natural map.

This reduces the proof to comparing the pushforward structure between
Hochschild and Hodge cohomology. The rest of the proof can be found in [CS22].
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